{ "cells": [ { "cell_type": "markdown", "id": "54bd0ceb-343c-4e71-9e60-d2fef482421a", "metadata": {}, "source": [ "# Jupyter NoteBook Starter\n", "\n", "This is a Jupyter notebook example as described in the article [Jupyter Notebook: A Complete Introduction](https://codesolid.com/jupyter-notebook-a-complete-introduction/). This is a Markdown \"cell\" (row). You can double-click this cell to view or edit the text. When you're done editing, type Shift-ENTER to run the cell." ] }, { "cell_type": "code", "execution_count": null, "id": "c0bf1366-50c0-46d6-b3d6-d7b789b8865e", "metadata": {}, "outputs": [], "source": [ "# This is a Python Code Cell. It behaves like the Python terminal, \n", "# so it will display the results of the last expression. You can also use print or other Python functions, or course.\n", "# Double-click on this cell if you want to edit the python code. When you're ready to run it, type Shift-ENTER again.\n", "\n", "print(2+2)\n", "message = \"Hello from Python\"\n", "message" ] }, { "cell_type": "markdown", "id": "72b510f4-e087-41b1-8183-accfd5ab5c3b", "metadata": {}, "source": [ "Jupyter Notebook supports Graphs using Matplotlib, Seaborn, etc.\n", "\n", "For the rest of the notebook, I saved the output so you could see how it looks." ] }, { "cell_type": "code", "execution_count": 8, "id": "ae7c9f98-6a15-4f18-9a8c-d47bc8990107", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
nameageheight_inches
0Roger2773
1Juan3270
2Marla4061
3Diane1665
\n", "
" ], "text/plain": [ " name age height_inches\n", "0 Roger 27 73\n", "1 Juan 32 70\n", "2 Marla 40 61\n", "3 Diane 16 65" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import pandas as pd\n", "from pandas import DataFrame\n", "import matplotlib.pyplot as plt\n", "\n", "data = {\n", " 'name': ['Roger', 'Juan', 'Marla', 'Diane'],\n", " 'age': [27, 32, 40, 16],\n", " 'height_inches': [73, 70, 61, 65]\n", "}\n", "\n", "df = DataFrame(data)\n", "df" ] }, { "cell_type": "code", "execution_count": 12, "id": "6aee8293-ca7a-46c7-a791-9538bc5285c0", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAEaCAYAAAAIdgwDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAX8ElEQVR4nO3de5RV9X3+8fcjl4DKRXHKoiJCEqpBCxMdqWjSmBBcNOEXXP2pSPxV4qLQ3G3SXIhNW9OyDEmtlxXaGH5eIC1VFHVpNEmVMaarmiADDiJgAlJYjkEYqRhQ7vn0j70HhmGGOTNzZjbfmee1Fuucvc/e5zwcmIfNd98UEZiZWXpOKjqAmZm1jwvczCxRLnAzs0S5wM3MEuUCNzNLlAvczCxRvbvyw84444wYOXJkV36kmVnyVq5c+UZEVDSd36UFPnLkSGpqarryI83MkidpS3PzPYRiZpYoF7iZWaJc4GZmierSMXAzK86BAweoq6tj7969RUexFvTr14/hw4fTp0+fkpZ3gZv1EHV1dQwYMICRI0ciqeg41kREsGPHDurq6hg1alRJ63gIxayH2Lt3L0OGDHF5n6AkMWTIkDb9D8kFbtaDuLxPbG3983GBm5klKvkx8JFznig6Qkk2z/t40RHMjlLun51S/o5v3ryZKVOm8NJLL5X0nnfeeScnn3wy1113XYvLLFy4kJqaGubPn3/MazfffDM33njjcT/jkksu4bnnnispT6mf21W8BW5mJ6xPf/rTxy3v1tx8882tLtOe8j5RuMDNrEsdOnSIWbNmcd5553H55ZezZ88eXnnlFSZPnsyFF17IBz/4QV5++WUAbrrpJm655RYAVqxYwdixY6msrOSrX/0q559//uH3/M1vfsPkyZMZPXo0X/va1wCYM2cOe/bsobKykmuvvbbFPKeeeioAzzzzDJdddhlXXnkl5557Ltdeey0Nt5xcsWIFl1xyCePGjWP8+PHs2rWrxc8FePLJJ5kwYQIXXHABV111Fbt37z6cacyYMYwdO5avfOUrHf4uXeBm1qU2bNjA5z73OdauXcvgwYN56KGHmD17Nt/73vdYuXIlt9xyC5/97GePWe/666/nBz/4AbW1tfTq1euo12pra1myZAlr1qxhyZIlvPrqq8ybN4/+/ftTW1vL4sWLS8r2wgsvcPvtt7Nu3To2bdrEs88+y/79+5k2bRp33HEHq1evZtmyZfTv37/Fz33jjTeYO3cuy5YtY9WqVVRVVXHrrbeyY8cOHnnkEdauXcuLL77IN7/5zQ5/l8mPgZtZWkaNGkVlZSUAF154IZs3b+a5557jqquuOrzMvn37jlpn586d7Nq1iwkTJgDwyU9+kscff/zw6xMnTmTQoEEAjBkzhi1btnDWWWe1Odv48eMZPnw4AJWVlWzevJlBgwYxbNgwLrroIgAGDhx43M/duXMn69at49JLLwVg//79TJgwgUGDBtGvXz9mzpzJlClTmDJlSpvzNdVqgUs6B1jSaNa7gb8FfpjPHwlsBq6OiDc7nMjMurV3vetdh5/36tWLbdu2MXjwYGpra8v2ngcPHuyS92lu+Yhg0qRJ3Hfffccs//zzz1NdXc3SpUuZP38+Tz/9dLtyNmh1CCUifhURlRFRCVwIvAM8AswBqiNiNFCdT5uZtcnAgQMZNWoUDz74IJCdkbh69eqjlhk8eDADBgxg+fLlANx///0lvXefPn04cOBAh/Kdc845bN26lRUrVgCwa9eu4xb7xRdfzLPPPsvGjRsBePvtt/n1r3/N7t27eeutt/jYxz7GbbfddszvsT3aOoQyEXglIrZImgpcls9fBDwDfL3DicysS5xIh7YuXryYz3zmM8ydO5cDBw5wzTXXMG7cuKOWufvuu5k1axYnnXQSH/rQhw4PXRzP7NmzGTt2LBdccEHJ4+BN9e3blyVLlvCFL3yBPXv20L9/f5YtW9bi8hUVFSxcuJDp06cfHgqaO3cuAwYMYOrUqezdu5eI4NZbb21XnsbUsJe1pIWle4BVETFf0s6IGJzPF/Bmw3RLqqqqotw3dPBx4GalWb9+Pe973/uKjtFuu3fvPnzEyLx589i6dSt33HFHwanKr7k/J0krI6Kq6bIlb4FL6gt8AvhG09ciIiQ1+y+BpNnAbIARI0aU+nFWAP9jaCeyJ554gm9/+9scPHiQs88+m4ULFxYdqXBtGUL5E7Kt72359DZJwyJiq6RhwPbmVoqIBcACyLbAO5TWzHqsadOmMW3atHatu2PHDiZOnHjM/OrqaoYMGdLRaIVpS4FPBxrvVn0MmAHMyx8fLWMuM7OyGTJkSIeOcjlRlXQij6RTgEnAw41mzwMmSdoAfDSfNrMTWFv2eVnXa+ufT0lb4BHxNjCkybwdZEelmFkC+vXrx44dO3xN8BNUww0d+vXrV/I6PhPTrIcYPnw4dXV11NfXFx3FWtBwS7VSucDNeog+ffqUfKsuS4MvZmVmligXuJlZolzgZmaJcoGbmSXKBW5mligXuJlZolzgZmaJ8nHgZpYEXy3zWN4CNzNLlAvczCxRLnAzs0S5wM3MEuUCNzNLlAvczCxRLnAzs0S5wM3MEuUCNzNLVKk3NR4saamklyWtlzRB0umSnpK0IX88rbPDmpnZEaVugd8B/DQizgXGAeuBOUB1RIwGqvNpMzPrIq1eC0XSIOCPgU8BRMR+YL+kqcBl+WKLgGeAr3dGSLMU+dod1tlK2QIfBdQD90p6QdJdkk4BhkbE1nyZ14GhnRXSzMyOVUqB9wYuAL4fEe8H3qbJcElEBBDNrSxptqQaSTX19fUdzWtmZrlSCrwOqIuI5fn0UrJC3yZpGED+uL25lSNiQURURURVRUVFOTKbmRklFHhEvA68KumcfNZEYB3wGDAjnzcDeLRTEpqZWbNKvaHDF4DFkvoCm4Drycr/AUkzgS3A1Z0T0czMmlNSgUdELVDVzEsTy5rGzMxK5jMxzcwS5QI3M0uUC9zMLFEucDOzRLnAzcwS5QI3M0uUC9zMLFEucDOzRLnAzcwS5QI3M0uUC9zMLFEucDOzRLnAzcwS5QI3M0uUC9zMLFEucDOzRLnAzcwS5QI3M0uUC9zMLFEucDOzRJV0U2NJm4FdwCHgYERUSTodWAKMBDYDV0fEm50T08zMmmrLFviHI6IyIhruTj8HqI6I0UB1Pm1mZl2kI0MoU4FF+fNFwBUdTmNmZiUrtcADeFLSSkmz83lDI2Jr/vx1YGjZ05mZWYtKGgMHPhARr0n6PeApSS83fjEiQlI0t2Je+LMBRowY0aGwZmZ2RElb4BHxWv64HXgEGA9skzQMIH/c3sK6CyKiKiKqKioqypPazMxaL3BJp0ga0PAcuBx4CXgMmJEvNgN4tLNCmpnZsUoZQhkKPCKpYfl/j4ifSloBPCBpJrAFuLrzYpqZWVOtFnhEbALGNTN/BzCxM0KZmVnrfCammVmiXOBmZolygZuZJcoFbmaWKBe4mVmiXOBmZolygZuZJcoFbmaWKBe4mVmiXOBmZolygZuZJcoFbmaWKBe4mVmiXOBmZolygZuZJcoFbmaWKBe4mVmiXOBmZolygZuZJarkApfUS9ILkh7Pp0dJWi5po6Qlkvp2XkwzM2uqLVvgNwDrG01/B7gtIt4LvAnMLGcwMzM7vpIKXNJw4OPAXfm0gI8AS/NFFgFXdEI+MzNrQalb4LcDXwN+l08PAXZGxMF8ug44s7zRzMzseFotcElTgO0RsbI9HyBptqQaSTX19fXteQszM2tGKVvglwKfkLQZuJ9s6OQOYLCk3vkyw4HXmls5IhZERFVEVFVUVJQhspmZQQkFHhHfiIjhETESuAZ4OiKuBX4GXJkvNgN4tNNSmpnZMTpyHPjXgS9L2kg2Jn53eSKZmVkpere+yBER8QzwTP58EzC+/JHMzKwUPhPTzCxRLnAzs0S5wM3MEuUCNzNLlAvczCxRLnAzs0S5wM3MEuUCNzNLlAvczCxRLnAzs0S5wM3MEuUCNzNLlAvczCxRLnAzs0S5wM3MEuUCNzNLlAvczCxRLnAzs0S5wM3MEuUCNzNLVKsFLqmfpOclrZa0VtK38vmjJC2XtFHSEkl9Oz+umZk1KGULfB/wkYgYB1QCkyVdDHwHuC0i3gu8CczstJRmZnaMVgs8MrvzyT75rwA+AizN5y8CruiMgGZm1rySxsAl9ZJUC2wHngJeAXZGxMF8kTrgzBbWnS2pRlJNfX19GSKbmRmUWOARcSgiKoHhwHjg3FI/ICIWRERVRFRVVFS0L6WZmR2jTUehRMRO4GfABGCwpN75S8OB18obzczMjqeUo1AqJA3On/cHJgHryYr8ynyxGcCjnZTRzMya0bv1RRgGLJLUi6zwH4iIxyWtA+6XNBd4Abi7E3OamVkTrRZ4RLwIvL+Z+ZvIxsPNzKwAPhPTzCxRLnAzs0S5wM3MEuUCNzNLlAvczCxRLnAzs0S5wM3MEuUCNzNLlAvczCxRLnAzs0S5wM3MEuUCNzNLlAvczCxRLnAzs0S5wM3MEuUCNzNLlAvczCxRLnAzs0S5wM3MElXKXenPkvQzSeskrZV0Qz7/dElPSdqQP57W+XHNzKxBKVvgB4G/iogxwMXA5ySNAeYA1RExGqjOp83MrIu0WuARsTUiVuXPdwHrgTOBqcCifLFFwBWdlNHMzJrRpjFwSSOB9wPLgaERsTV/6XVgaHmjmZnZ8ZRc4JJOBR4C/jIiftv4tYgIIFpYb7akGkk19fX1HQprZmZHlFTgkvqQlffiiHg4n71N0rD89WHA9ubWjYgFEVEVEVUVFRXlyGxmZpR2FIqAu4H1EXFro5ceA2bkz2cAj5Y/npmZtaR3CctcCvwZsEZSbT7vRmAe8ICkmcAW4OpOSWhmZs1qtcAj4r8AtfDyxPLGMTOzUvlMTDOzRLnAzcwS5QI3M0uUC9zMLFEucDOzRLnAzcwS5QI3M0uUC9zMLFEucDOzRLnAzcwS5QI3M0uUC9zMLFEucDOzRLnAzcwS5QI3M0uUC9zMLFEucDOzRLnAzcwS5QI3M0tUKXelv0fSdkkvNZp3uqSnJG3IH0/r3JhmZtZUKVvgC4HJTebNAaojYjRQnU+bmVkXarXAI+I/gf9pMnsqsCh/vgi4oryxzMysNe0dAx8aEVvz568DQ8uUx8zMStThnZgREUC09Lqk2ZJqJNXU19d39OPMzCzX3gLfJmkYQP64vaUFI2JBRFRFRFVFRUU7P87MzJpqb4E/BszIn88AHi1PHDMzK1UphxHeB/wCOEdSnaSZwDxgkqQNwEfzaTMz60K9W1sgIqa38NLEMmcxM7M28JmYZmaJcoGbmSXKBW5mligXuJlZolzgZmaJcoGbmSXKBW5mligXuJlZolzgZmaJcoGbmSXKBW5mligXuJlZolzgZmaJcoGbmSXKBW5mligXuJlZolzgZmaJcoGbmSXKBW5mligXuJlZojpU4JImS/qVpI2S5pQrlJmZta7dBS6pF/DPwJ8AY4DpksaUK5iZmR1fR7bAxwMbI2JTROwH7gemlieWmZm1piMFfibwaqPpunyemZl1gd6d/QGSZgOz88ndkn7V2Z9ZBmcAb5TzDfWdcr5bUvxdlpe/z/JK5fs8u7mZHSnw14CzGk0Pz+cdJSIWAAs68DldTlJNRFQVnaM78HdZXv4+yyv177MjQygrgNGSRknqC1wDPFaeWGZm1pp2b4FHxEFJnwf+A+gF3BMRa8uWzMzMjqtDY+AR8WPgx2XKciJJasjnBOfvsrz8fZZX0t+nIqLoDGZm1g4+ld7MLFEucDOzRHX6ceDWs0i6FLiJ7LjV3oCAiIh3F5nLrDvyGDiHr+uyNiLOLTpL6iS9DHwJWAkcapgfETsKC2XWiKSTgb8CRkTELEmjgXMi4vGCo7WZh1CAiDgE/ErSiKKzdANvRcRPImJ7ROxo+FV0qJRJuljSCkm7Je2XdEjSb4vOlbB7gX3AhHz6NWBucXHaz0MoR5wGrJX0PPB2w8yI+ERxkZL0M0n/CDxM9kMCQESsKi5S8uaTnSj3IFAFXAf8QaGJ0vaeiJgmaTpARLwjSUWHag8X+BF/U3SAbuKP8sfGpycH8JECsnQbEbFRUq/8f4v3SnoB+EbRuRK1X1J/sr+XSHoPjTY2UuICz0XEzyWdDYyOiGX5OFmvonOlJiI+XHSGbuid/HIVtZK+C2zFw58d8XfAT4GzJC0GLgU+VWiidvJOzJykWWRXTTw9It6T79i4MyImFhwtOZI+DpwH9GuYFxF/X1yitOUbFtuBPmQ7iAcB/xIRGwsNljBJQ4CLyY6S+mVElPWKhF3FBZ6TVEt2k4rlEfH+fN6aiPjDQoMlRtKdwMnAh4G7gCuB5yNiZqHBzBqRdCZHDnUFICL+s7hE7eMhlCP2RcT+hn0ZknqTj5FZm1wSEWMlvRgR35L0T8BPig6VIklrOM7fwYgY24Vxug1J3wGmAWuB3+WzA3CBJ+znkm4E+kuaBHwW+FHBmVK0J398R9LvAzuAYQXmSdmUogN0U1eQHfed5I7LxlzgR8wBZgJrgL8gu8riXYUmStPjkgYD/wisItuy8ffYDhGxJT/JbJl3DpfVJrL9CckXuMfArdNIehfQLyLeKjpLyiRVA3/q77E8JD0EjAOqOfpchS8WFqqdvAWea2G88S2gBpjrswlLI+m6ZuYRET8sIk83sRtYI+kpjj7JLLnCOUE8Rje5e5gL/IifkF2749/z6WvIjqZ4HVgI/J9iYiXnokbP+wETyYZSXODt93D+y8ogIhYVnaFcPISSk7QqIi5obp4PJ2y/fDz8/oiYXHQWM4D8HI9vA2M4+lyF5K6Y6bO5juglaXzDhKSLOHIm5sFiInULbwOjig6RMkmjJS2VtE7SpoZfRedK2L3A98l+rj9M9r/Dfys0UTt5COWIPwfukXQq2dlZvwVmSjqF7F9rK4GkH3FkX0Ivsq2cB4pL1C3cS3b6921khXM93vjqiP4RUS1JEbEFuEnSSuBviw7WVh5CaULSIADv8W8fSR/iSIEfBLZExGsFRkqepJURcWHjobyGeUVnS5Gk54APAEuBp8kuJzsvIs4pNFg7eAs8lxf33wF/nE//HPh7F3lpJO0iK+6ml+UMSfuAV4C/jojqLg+Xvn2STgI2SPo8WeGcWnCmlN1AdoDCF4F/ILtS5oxCE7WTt8Bz+bGhLwENe6j/DBgXEX9aXKruIT8Z5XxgcUScX3Se1OT7Y9YDg8kKZxDw3Yj4ZZG5rHgu8Jyk2oiobG2etZ+kv4iIHxSdw3omSbdHxF822U9zWIo3b/EQyhF7JH0gIv4LDt+cd08r61gbuLzbRtJxTzZJsXAK9q/54y2Fpigjb4HnJFWSDZ8MIhvH/R9gRkS8WGQu67kk1QOvAvcBy2myfyEifl5Eru5AUgVARNQXnaUjXOBNSBqYP30buCYiFheZx3qufN/BJGA6MBZ4ArgvItYWGixhkm4CPk92GKbIjpT6Xqo3HOnxx5JKGijpG5Lm55eR3UV209iNwNXFprOeLCIORcRPI2IG2d1jNgLP5EeiWBtJ+jLZ7dMuiojTI+I0snu4XirpS8Wma58evwUu6VHgTeAXZNft+D2yf5lviIjaAqOZNVzR8eNkW+EjyS7CdI+PrW+7/EbQk5rePi0fTnmy4U5cKfFOTHh3o5Mj7iK7YeyIiNhbbCzr6ST9kOzwyx8D34qIlwqOlLo+zd37MiLqJfUpIlBHucDhQMOTiDgkqc7lbSeI/0e2L+YG4IsNt/sj+x9iRMTAlla0Zu1v52snLA+hSIc4co1lAf2Bd/APiVm30uRn/aiXyG48ktxWeI8vcDOzVPX4o1DMzFLlAjczS5QL3MwsUS5wM7NEucCt25E0UtJ6Sf9f0lpJT0rqL2mWpBWSVkt6SNLJ+fILJX1f0i/z25VdJume/D0WNnrfyyX9QtIqSQ/md28yK4wL3Lqr0cA/R8R5wE7g/wIPR8RFETGO7PraMxstfxowAfgS2dmOtwHnAX8oqVLSGcA3gY/mN7+uAb7cVb8Zs+b4RB7rrv670aUQVpKdhn6+pLlkN0Y4FfiPRsv/KCJC0hpgW0SsAZC0Nl93ONn9PZ/NT6jpS3b5BbPCuMCtu9rX6PkhshO0FgJXRMRqSZ8CLmtm+d81Wfd3ZD8nh4CnImJ6J+U1azMPoVhPMgDYml/34to2rvtLsqvWvRdA0imS/qDcAc3awgVuPcnfkN0Y4Vng5basmF/4/1PAfZJeJBs+ObfcAc3awqfSm5klylvgZmaJcoGbmSXKBW5mligXuJlZolzgZmaJcoGbmSXKBW5mligXuJlZov4XtrX3oMjLjyEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.plot(x='name', y='height_inches', kind='bar')\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "id": "cf8f0a8a-23fd-4b12-9a70-3e9613e68794", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.2" } }, "nbformat": 4, "nbformat_minor": 5 }